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EFFECT OF FIBER VOLUME FRACTION ON FRACTURE MECHANICS IN 

CONTINUOUSLY REINFORCED FIBER COMPOSITE MATERIALS 

 
 

Thomas Wasik 
 
 

ABSTRACT 
 
 

The application of advanced composite materials, such as graphite/epoxy, 

has been on the rise for the last four decades.  The mechanical advantages, 

such as their higher specific stiffness and strength as compared to monolithic 

materials, make them attractive for aerospace and automotive applications.  

Despite these advantages, composites with brittle fibers have lower ductility and 

fracture toughness than monolithic materials. 

One way to increase the fracture toughness of composites is to have a 

weak fiber-matrix interface that would blunt crack tips by crack deflection into the 

interface and hence enhance fracture toughness.  However, this also reduces the 

transverse properties of the composite.  Therefore, an optimum fiber-matrix 

interface would be the one that is just weak enough to cause crack deflection into 

interface. 

This study investigates the effect of fiber-to-matrix moduli ratio, fiber-

volume fraction, fiber orthotropy, and thermal stresses on the possibility of crack 
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deflection.  A finite element model is used to analyze a 2-D axisymmetric 

representative volume element- a three-phase composite cylinder made of fiber, 

matrix, and composite.  A penny shaped crack is assumed in the fiber. 

To determine whether the crack would deflect into the interface or 

propagate into the matrix, maximum stresses at the fiber-matrix interface and in 

the matrix are compared to the interface and matrix strengths. 

As opposed to most studies in the literature, this study found that fiber-

volume fractions do have an impact on crack deflection and this impact increases 

with large fiber-to-matrix moduli ratios.  The presence of orthotropic fiber in the 

composite increases the possibility of crack deflection with increasing fiber-

volume fraction in the early and middle stages of the fiber crack growth.  The 

thermal stresses decrease the likelihood of crack deflection when the thermal 

expansion coefficient of the matrix is larger than that of the fiber. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Overview 
The use of composite materials has been steadily increasing in the past 

several decades.  The high strength, high stiffness and lightweight make them 

particularly attractive to designers in a variety of industries.   The composite 

material consists of a matrix and one of the reinforcing phases such as 

particulate, flake and fiber.    In the continuous fiber composites, due to its large 

surface area, the fiber-matrix interface influences the behavior of a composite.  In 

addition to providing a mechanism to transfer loads from matrix to fibers, the 

interface also plays an important role in determining the composite toughness.                           

In spite of many advantages, the composite materials suffer from lower 

ductility and toughness when compared to commonly used metals.  A 

unidirectional composite with brittle fibers and a crack propagating perpendicular 

to the fibers can fail in at least three modes under longitudinal tensile load.  

These modes are:(a) brittle failure, (b) brittle failure with fiber pullout, (c) brittle 

failure with fiber pullout and interface shear failure or interface tensile failure [1].  

This is illustrated in Figure 1.  The tensile or shear interface failure is a 

prerequisite for phenomena such as crack deflection into the interface, crack 

bridging by fibers, and fiber pullout [2].    
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All of these are energy-dissipating phenomena during crack propagation process 

and help enhance toughness of the fiber-reinforced composites. 

 

 
 

 

 

 

 

 

 
Figure 1: Modes of Failure of Unidirectional Lamina Under a Longitudinal Tensile 

Load 

 
By controlling the strength of the interface bond between matrix and the 

fiber, the designer is able to influence the mechanical properties of the 

composite.  To take a full advantage of the fiber properties and to obtain high 

strength and high stiffness composite, a strong fiber-matrix bond is very 

desirable.  Moreover, a strong interface bond results in high shear strength of the 

composite and an effective load transfer to the fibers under longitudinal tensile 

load.  However, a strong interface bond will significantly decrease the ability of 

the fiber to debond from matrix during fracture process and lowering the 

composite toughness.  This ability is very beneficial especially in brittle fiber 

(a) (b) (c) 
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composites because the debonding process can act as crack arrestor and 

prevent further propagation of the crack.  

This study presents an axisymmetric finite element analysis of a penny-

shaped crack in a brittle fiber approaching a fiber-matrix interface.  The main goal 

of this study was to determine the influence of fiber-volume fraction for various 

fiber-to-matrix elastic moduli ratios on possibility of the interface failure either in 

shear or in tension.   Furthermore, the influence of residual stresses and the fiber 

orthotropy were also examined.  The residual stresses arise from the thermal 

expansion mismatch between fiber and matrix as the composite is cooled down 

after processing. 

1.2 Literature Review 
 

The fiber-volume fraction is one of the parameters employed in analyzing 

composites.  There have been several models developed to address the failure 

of the composites as function of this parameter.  These models are: fiber cracks 

in dilute fiber-volume fraction composites by Gupta [3], periodic cracks in higher 

fiber volume fraction composites by Erdogan and Bakioglu [4], and 

nonhomogenous interfaces and nondilute fiber-volume fractions by Bechel and 

Kaw [5]. 

In addition, a number of criteria have been presented in the past by 

various authors in order to explore the phenomenon of crack deflection at the 

fiber-matrix interface.  He and Hutchinson [6] examined the tendency of the 

transverse crack impinging on the interface joining two dissimilar materials to 

penetrate the interface or to deflect into the interface.  The materials on either 
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side of the interface are elastic and isotropic. They presented criteria that 

compared the energy release rate for the deflected crack to the maximum energy 

release rate for a penetrating crack 
p

d

Γ
Γ .  This result can be compared to ratio of 

the toughness of the interface to the mode I toughness of uncracked material 

c

ic

Γ
Γ .  The impinging crack is most likely to be deflected into the interface if  

p

d

c

ic

Γ
Γ

<
Γ
Γ

 (1) 

because the condition for propagation into the interface will be met at a lower 

load than that for penetration across the interface.  The crack will tend to 

penetrate the interface when the inequality is reversed.   

Swenson and Rau [7] studied the plain strain problem of a crack 

terminating perpendicular to the interface between two isotropic half spaces with 

different elastic constants.  They concluded that the probability of an interface 

failure in shear or in tension is very highly influenced by modulus ratio of the two 

isotropic half spaces.  A crack in the stiffer material will likely cause the interface 

to fail in shear, whereas the crack in softer material will lead to tensile splitting of 

the interface. 

Cornie et al. [8] came up with the criteria that addressed the fiber-matrix 

debonding.  The debonding can be expressed in terms of cohesive strength of 

the interface, shear strength of the interface, and fiber fracture stress.  They 

found that if the ratio of the interface cohesive strength (normal or shear) to the 
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fiber strength is less than the ratio of the normal (or shear) stress at the interface 

to axial stress at the crack tip the tendency of the crack to deflect along the 

interface is higher. 

Pagano [9] investigated the transverse matrix crack impinging on the fiber-

matrix interface in a brittle matrix composite.  In this study, he constructed 

general material design curves for fiber penetration and interface debonding for 

multiple fiber-to-matrix ratios.  These curves allow a comparison between 

potential energy release rate and a material toughness value to make initial 

assessment of the success of failure of a composite made from a particular 

combination of materials. 
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CHAPTER 2 
 
 

FINITE ELEMENT MODEL DESIGN 
 
 

2.1 Geometry and Boundary Conditions 

The analysis of a penny-shape crack located in a brittle fiber was performed 

using the finite element software package ANSYS® 8.0.  To simulate a fracture 

behavior of the cracked fiber and the resulting stresses, a representative volume 

element  (RVE) consisting of a single fiber surrounded by cylindrical tubes of 

matrix and composite, respectively, was used as illustrated in Figure 2.  The RVE 

is considered to represent the composite and to respond in the same way as the 

whole composite [10]. 

 

 
Figure 2: The Representative Volume Element  

INTERFACE 

FIBER 

MATRIX 

COMPOSITE 

CRACK 

r

z
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The finite element model was designed as 2-D axisymmetric structure in 

the r-z plane.  The use of an axisymmetric model greatly reduced the modeling 

and analysis time compared to that of an equivalent 3-D model.  The geometry 

and boundary conditions of the finite element model are schematically 

represented in Figure 3.  Due to symmetry in the geometry and the boundary 

conditions the finite element calculations were performed on the right upper 

quadrant of the representative volume unit shown in Figure 2.  The boundary 

conditions for the finite element model were taken as: 

1. at 0=z  

a) zu =0  for  Wra ≤≤  

b) rzσ =0, zzσ =0  for ar <<0  

2. at Lz =  

a) zu =prescribed uniform displacement, Wr ≤≤0  

b) rzσ =0, Wr ≤≤0  

3. at  0=r  

a) ru =0  for  Lz ≤≤0    

b)  rzσ =0,   Lz ≤≤0           

4. at Wr =  

          a)  rzσ =0, Lz ≤≤0   

          b)  rrσ =0, Lz ≤≤0     
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Figure 3:  Schematic Representation of Finite Element Model 

rf
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Also, the mode of deformation is axisymmetric so the non-zero stress and 

displacement components depend only on r and z and are independent of θ. 

The 6-node triangular element (Plane 2) with a quadratic displacement 

behavior that was used for all the analyses performed in this study is shown in 

Figure 4.    The dimensions of the finite element model were 10 units wide and 

30 units high and were kept constant throughout the entire study. 

The finite element software used to carry out the finite element 

computations in this study supported only a limited number of nodes (128,000).   

 

 
Figure 4: Plane2 Element  

 

Consequently, the model was subdivided into five separate areas to allow 

greater concentration of elements in the regions in which the stress gradient was 

expected to be high, such as the crack tip and fiber-matrix interface (Area I and 

Area II).  The remaining areas had significantly lower concentrations of elements.  

On average, there were 120,000 nodes and 60,000 elements in each model.   
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The fiber of unit radius ( fr ) is comprised of Area I and Area III.  Also, the Area I 

contains crack of radius a.  The radius b of the two concentric cylinders 

representing fiber and matrix was calculated based on the fiber-volume fraction 

given by 

 2

2

b
r

V f
f =  (2)  

 The three fiber-volume fractions used in the analysis were: 0.25, 0.50, 0.75 and 

the corresponding b values were: 2, 1.414 and 1.155, respectively.        

The fiber containing the penny-shaped crack is parallel to the longitudinal 

axis (z axis) and the crack plane z=0 is oriented perpendicular to that axis.  The 

fiber-matrix interface was modeled as perfectly bonded.  Furthermore, the 

composite was subjected to uniform and constant longitudinal tensile strain in the 

positive z direction and therefore was displacement controlled.  As a 

consequence, the crack experiences Mode I loading. Figure 5 shows the shapes 

of deformed and undeformed finite element model.   

The Linear Elastic Fracture Mechanics (LEFM) approach was used as a 

means to obtain stress field caused by the presence of the crack.  This approach 

was justified due to the brittle nature of the fiber.  Because the stresses are 

singular in the region immediately surrounding the crack tip and vary as 
d

1 , 

where d is the distance from the crack tip, the triangular quadratic elements were 

employed with their midside nodes shifted by a quarter toward the crack tip.   
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The elements were arranged in semicircle around the crack tip, one 

element every 30 degrees.   Figure 6 illustrates the element arrangement in the 

crack tip vicinity.      

 

 

 

Figure 5:  Deformed and Undeformed Shapes of Finite Element Model 
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Figure 6:  The Crack Tip in the Finite Element Model 

 

2.2 Fundamental Equations  

The majority of a unidirectional fiber-reinforced composites are classified 

either as an orthotropic or transversely isotropic materials.  This classification is 

based on the geometric fiber arrangement in the matrix.  A unidirectional fiber-

reinforced composite with fibers arranged in hexagonal or random manner in the 

plane perpendicular to the fibers axes, as shown in Figure 7, is considered to be 

transversely isotropic. 

Crack Tip 
First Row of   

Elements 

Second Row 
of Elements
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Figure 7:  Cross-Sections of Composites with Hexagonal and Random Fiber              

Arrangement 

 
  

The transversely isotropic material requires only five engineering 

constants to fully describe its elastic behavior.  The engineering constants are: 

zzE , rrE , zrν , zrG , θrG .  By considering fibers to be along z-axis in the cylindrical 

coordinate system, then the r-θ plane becomes isotropic and there is no 

preferred direction in that plane.  The following subsections list equations [11] 

that were used to calculate engineering constants needed to describe composite 

material.  The equations are part of Input Files written for finite element software.  

The sample of an Input File is located in Appendix 1. 

 

 

 

 

 

HEXAGONAL RANDOM 
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2.2.1 Isotropic Fiber, Isotropic Matrix 

The following are the equations used for calculating material properties of the 

composite consisting of isotropic fiber and isotropic matrix. 

1.Elastic Moduli    

 a.  Longitudinal  
( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
+⋅+⋅=

mf

m

m

f

fmmf
mmffzz

Gk
V

k
V

VV
EVEVE

1

4 2νν
 (3)  

where,  

 fV  is the fiber volume fraction 

 mV  is the matrix volume fraction 

 fE  is the elastic modulus of fiber 

 mE  is the elastic modulus of matrix 

 mG  is the shear modulus of matrix 

 fν  is the Poisson’s ratio of fiber 

 mν  is the Poisson’s ratio of matrix 

 fk  is the plane-strain bulk modulus of fiber 

 mk  is the plane-strain bulk modulus of matrix 

  

 b.  Transverse     

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

==

f

m
f

m
rr

E
E

V

E
EE

11
θθ  (4)  
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2.  Poisson’s Ratios 

a. 

( )

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++==

mf

m

m

f

fm
mfmf

mmffzzr

Gk
V

k
V

kk
VV

VV
1

11νν

νννν θ  (5)  

b. ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

kE
E

zz

zr
rrr 2

121
2ν

ν θ  (6)  

where, 

k  the is plane-strain bulk modulus      

  

3.  Shear Moduli 

 a. 
( )

( )⎥⎥⎦
⎤

⎢
⎢
⎣

⎡

++

++
==

fmmf

mmff
mzzr VGVG

VGVG
GGG

1
1

θ  (7) 

where, 

          fG  is the shear modulus of fiber   

   

b.  ( )θθ ν r

rr
r

EG
+

=
12

 (8)  

where,         

( )f

f
f

E
G

ν+
=

12
 (9)  

( )m

m
m

EG
ν+

=
12

 (10)  
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4.  Bulk Modulus 

            
( ) ( )

( )mffmf

mfmfmf

kkVGk
kkGVGk

k
−−+

−++
=2                     (11) 

where,    

           ( )( )ff

f
f

E
k

νν +−
=

1212
 (12) 

          ( )( )mm

m
m

Ek
νν +−

=
1212

  (13) 

 

2.2.2 Transversely Isotropic Fiber, Isotropic Matrix 

The following are the equations used for calculating material properties of the 

composite consisting of transversely isotropic fiber and isotropic matrix. 

1.Elastic Moduli     

a. Longitudinal  mmffzz VEVEE += 1   (14) 

b. Transverse  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

==

22

11
f

m
f

m
rr

E
EV

EEE θθ  (15) 

 

2.  Shear Moduli 

           a.  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

==

zrf

m
f

m
zzr

G
G

V

G
GG

11
θ                           (16)                  
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 b.  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

=

θ

θ

rf

m
f

m
r

G
G

V

G
G

11

 (17) 

 

3.  Poisson’s Ratios 

 a.  mmffzzr VvVvvv
zr

+== θ  (18) 

 b.  1
2

−=
θ

θ
r

rr
r G

E
v  (19) 

4.   Coefficients of Thermal Expansion 

a. Longitudinal  
mmff

mmmfff
zz VEVE

VEVE

zz

zzzz

+

+
=

αα
α  (20) 

b. Transverse   ( ) ( ) ( ) zzmmffmmmfffrr VVVV
zrzrrr

αννναναα +−+++= 11  (21) 

where, 

fα  is the coefficient of thermal expansion of fiber 

mα  is the coefficient of thermal expansion of matrix 
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CHAPTER 3 
 

FINITE ELEMENT MODEL VALIDATION 

 
 Solving the same test problem with analytical and finite element method 

assessed the accuracy of the finite element model.  The values of zu , ru , rrσ , 

zzσ , rzσ , and θθσ  obtained from the analysis of the finite element model at 

chosen locations (r, z) were compared to the values obtained at the same 

locations by using analytical analysis of the same model.  Linear elastic and 

isotropic material behavior was assumed for the finite element and analytical 

model (E= 61030×  and ν =0.3). Moreover, the assumption of perfect fiber-matrix 

interface was made. The stress field in the analytical method was determined by 

superposition of two boundary value problems, one hosting a crack, the other 

being uncracked as illustrated in Figure 8.   

 In Figure 8a, an uncracked cylinder is subjected to a uniform boundary 

traction p in the z direction.  This created the following stresses: zzσ  =p, rrσ =0, 

θθσ =0, and rzσ =0. Because of the isotropic material assumption, the Hooke’s law 

in cylindrical coordinates was used as a basis for displacements derivation in r 

and z directions, respectively.  
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Figure 8:  Principle of Superposition 

 

 ( )[ ]θθσσσε +−= zzrrrr v
E
1  (22) 

and because 

 pzz =σ ,  0=rrσ  , 0=θθσ  

rrε  simplifies to  

 
E
vp

rr
−

=ε  (23) 

Therefore, 

 ru rrr ε=  (24) 

Similarly, 

 zu zzz ε=  (25) 
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 Figure 8b shows traction p applied on the crack face.  To obtain the values 

for zu , zu , rzzzrr σσσ ,, , and θθσ , a system of differential equations [12] was solved 

using a code written in Maple® 9.0 (see Appendix 2).  Due to the symmetry, the 

problem can be reduced to the half space ( )∞<≤> rz 0,0  with the following 

conditions on the 0=z  plane: 

 ( ) 00,0, =rrzσ          0≥r           (r=cylinder radius) 
 
 ( ) przz −=00,,σ         ar <≤0     (a=half crack length) 
 
 ( ) 00,0, =ruz           ar >  

A single potential function ),( zrf  was employed which automatically frees plane 

0=z  from shear stress rzσ .  The displacement and stress components are then 

written in terms of that function: 

 ( )
zr
fz

r
fur ∂∂

∂
+

∂
∂

−=
2

21 ν  (26) 

 

 ( ) 2

2

12
z
fz

z
fuz ∂

∂
+

∂
∂

−−= ν  (27) 

 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
∂∂

∂
+

∂
∂

−
∂
∂

−=
zr

fz
z
f

r
f

rr 2

3

2

2

2

2

2212 ννµσ  (28) 

where, 

 µ   is the shear modulus of elasticity 

 ν    is the Poisson’s ratio 
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 ⎥
⎦

⎤
⎢
⎣

⎡
∂∂

∂
+

∂
∂

+
∂
∂

=
zr
f

r
z

r
f

r
f

r

2

2

2

212 νµσθθ  (29)                      

 

 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

−= 3

3

2

2

2
z
fz

z

f

zz µσ  (30) 

 
2

3

2
zr
fzrz ∂∂

∂
= µσ  (31) 

 
By using Fourier-Hankel transform, the function ),( zrf  of two variables is 

expressed in terms of the function )(sA , which depends only on the variable s.   

The function )(sA  is found by solving the following dual integral: 

 ( ) ( ) ( )
( )

∫ ∫
−

−
=

a t

rt

drrrpdtstsA
0 0 2

1
22

sin1
πµ

 (32) 

where,   

p is the normal traction 

The solution of the above equation is inserted into the equation for ),( zrf . 

 ∫
∞

−=
0

)(
0 )()(),( dsszersJ

s
sAzrf  (33) 

where, 

 ),( zrf  is the potential function of two variables 

 0J   is the Bessel function of order zero  
 
 

This, in turn, enables us to find the two displacements and four stress 

components.  The final values of the analytical analysis are obtained by adding 

results from part a and b as shown in Figure 8c. This was done using 

Mathcad®8.0 (Appendix 3). 
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 The finite element model was constructed as described in chapter 2. 

In order to achieve desired accuracy of results, the convergence of a finite 

element solution was conducted.  The purpose of the convergence study was to 

refine the mesh size so that the relative error between analytical and finite 

element solutions was less than one percent.  

Table 1 lists the percentages of relative errors at different locations along 

the interface and in the matrix of the composite.  The highest error was 0.1 

percent.   

 
Table 1:  Percentage Error Values of Five Nodal Locations 

Nodal Coordinates ru  zu  rrσ  θθσ  zzσ  rzσ  

r=1.00000 
z=0.02379 0.0126 0.0102 0.033 0.031 0.093 0.031 

r=1.00000 
z=0.05293 0.0128 0.0101 0.057 0.01 0.088 0.055 

r=1.01329 
z=0.03118 0.0127 0.1 0.026 0.017 0.093 0.057 

r=1.03737 
z=0.02182 0.0129 0.096 0.025 0.015 0.089 0.072 

r=1.03107 
z=0.05283 0.0129 0.1 0.019 0.032 0.086 0.074 
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CHAPTER 4 

 
FINITE ELEMENT MODEL ANALYSIS 

 
 The finite element model analysis was divided into several separate parts.  

Each part of the analysis investigated the influence of a single criterion on the 

possibility of the interface failure.  The following are the criteria used in the 

analysis: 

1. Fiber-Volume Fraction (FVF) 

2.  Fiber Orthotropy 

3. Thermal Stress 

For each criterion, the normalized length of the fiber crack, 
fr
a , was progressively 

increased from 0.6 to 0.97.  Furthermore, each criterion was analyzed at 0.25, 

0.50, and 0.75 fiber-volume fractions. 

 
4.1 Fiber-Volume Fraction Criterion 

The first part of the FVF analysis focused on how the fiber-volume fraction 

affects the interface tensile and shear failure for different      fiber-to-matrix elastic 

moduli ratios.  There were four moduli ratios used in the analysis as follows: 
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1. 
m

f

E
E

=1 represents composite with fiber and matrix made of the same 

material 

2. 
m

f

E
E

=6 represents typical ceramic matrix composite 

3. 
m

f

E
E

=20 represents typical polymer matrix composite such as glass/epoxy 

4. 
m

f

E
E

=80 represents typical polymer matrix composite such as 

             graphite/epoxy 

Each moduli ratio was analyzed at 0.25, 0.50 and 0.75 fiber-volume fractions.  

The fiber and matrix were assumed to be linear elastic and isotropic with the 

same Poisson’s ratios.  Table 2 lists fiber and matrix properties used in the 

analysis. 

Table 2: Material Properties of Constituents in the Fiber-to-Matrix Moduli Ratio 
Analysis 

PROPERTY SYMBOL FIBER MATRIX 

Modulus of Elasticity E 1, 6, 20, 80 1 

Poisson’s Ratio ν  0.3 0.3 

 

The displacement zu  was taken as 0.1, which constitutes 10% of the fiber radius.  

 The second part of the FVF analysis involved examining the influence of 

fiber-volume fraction and two different longitudinal displacements on interface 

failure in silicon carbide/epoxy composite.  The two displacements used in the 
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above analysis were calculated based on the fiber ultimate tensile strength.  The 

first displacement was obtained by calculating displacement value needed to 

create tensile stress in the fiber equal to the ultimate tensile strength of that fiber, 

henceforth called 100% displacement.  The second displacement was taken as a 

half of the first one, henceforth called 50% displacement.  Table 3 lists the 

properties of fiber and matrix for silicon carbide/epoxy composite [13,14]. 

Table 4 contains displacements and interface strengths used in performing the 

analysis of silicon carbide/epoxy composite [15]. 

 
Table 3:  Material Properties of Fiber and Matrix in Silicon Carbide/Epoxy 
Composite 

PROPERTY SYMBOL FIBER MATRIX 

Elastic Modulus E 400 [GPa] 3.44 [GPa] 

Poisson’s Ratio ν  0.15 0.35 

Fiber Ultimate Tensile 
Strength fibσ  3450 [MPa]  

Matrix Ultimate Tensile 
Strength matσ   69.29 [MPa] 

Coefficient of Thermal 
Expansion α 0   60 [ Cmm oµ ] 

 
 
Table 4: Displacements and Interface Strengths Used in Silicone Carbide/Epoxy    
Analysis 

100 % Displacement applied zu  0.25875 0.25875 

50 % Displacement applied zu  0.12938 0.12938 

Interface Normal Strength intσ  35 [MPa] 

Interface Shear Strength intτ  32.5 [MPa] 
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4.2   Orthotropic Fiber Criterion 

 To determine the influence of the orthotropic fiber on the interface failure, 

two graphite/epoxy composites were used for analysis with the fiber and matrix 

properties listed in Tables 5 and 6 [16].  For comparison purposes, isotropic and 

orthotropic fibers were used.  The analysis was performed for 0.25, 0.50, and 

0.75 fiber-volume fractions.  The applied displacement uz was calculated based 

on ultimate tensile strength of the graphite fiber.  The applied displacement, zu , 

in both cases was 0.46587. 

Table 5:  Material Properties of Orthotropic Fiber and Isotropic Matrix in 
Graphite/Epoxy 

PROPERTY SYMBOL FIBER MATRIX 

Longitudinal Elastic Modulus zzE  260 [GPa] 3.5 [GPa] 

Transverse Elastic Modulus θθEErr ,  14 [GPa] 3.5 [GPa] 

Shear Modulus θzzr GG ,  50.95 [GPa]  

Shear Modulus θrG  8.27 [GPa]  

Poisson’s Ratio θνν zzr ,  0.26 0.35 

Poisson’s Ratio θν r  0.33 0.35 

 Ultimate Tensile Strength fibσ  4038 [MPa]  

 
Table 6: Material Properties of Isotropic Fiber and Matrix in Graphite/Epoxy 
Composite 

PROPERTY SYMBOL FIBER MATRIX 

Elastic Modulus  E 260 [GPa] 3.5 [GPa] 

Poisson’s Ratio ν 0.26 0.35 

 Ultimate Tensile Strength fibσ  4038 [MPa]  
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4.3 Thermal Stress Criterion 

 The thermal stresses are created as a result of a mismatch in thermal 

expansion coefficients of fiber and matrix.  The graphite/epoxy composite having 

different fiber and matrix thermal expansion coefficients was analyzed.   The 

obtained results were then compared to the results for the same composite 

analyzed without thermal expansion coefficients.  Each composite was analyzed 

at 0.25, 0.50, and 0.75 fiber-volume fractions.  The displacement zu was 

calculated based on ultimate tensile strength of a graphite fiber.  Table 7 lists 

material properties for fiber and matrix in the thermal stress analysis of 

graphite/epoxy composite.  The applied displacement, zu , was 0.46857 

 
Table 7:  Material Properties of Graphite/Epoxy Used for Thermal Stress Analysis 

PROPERTY SYMBOL FIBER MATRIX 

Longitudinal Elastic 
Modulus zzE  260 [GPa] 3.5 [GPa] 

Transverse Elastic Modulus θθEErr ,  14 [GPa] 3.5 [GPa] 

Shear Modulus θzzr GG ,  50.95 [GPa]  

Shear Modulus θrG  8.27 [GPa]  

Poisson’s Ratio θνν zzr ,  0.26 0.35 

Poisson’s Ratio θν r  0.33 0.35 

Coefficient of Thermal 
Expansion zzα  -0.855 [ Cmm oµ ] 90[ Cmm oµ ] 

Coefficient of Thermal 
Expansion θθαα ,rr  3.24 [ Cmm oµ ] 90[ Cmm oµ ] 

 Ultimate Tensile Strength fibσ  4038 [MPa]  
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In order to determine how each criterion plays a role in influencing the 

possibility of shear and tensile interface failure, the following stress ratios were 

calculated: ( )

1

max

σ
σ rr  and ( )

1

max

σ
σ rz for each crack length. Those ratios were then 

plotted as a function of normalized crack length, 
fr
a , for the three fiber-volume 

fractions.  The preceding ratios provide us with the qualitative means to 

determine and to compare the influence of different parameters on the two types 

of the interface failures.  This comparison is not only possible between different 

fiber-volume fractions of the same composite, but also between composites with 

various elastic moduli ratios. The ( )maxrrσ , and ( )maxrzσ  stresses represent the 

maximum tensile and shear stresses along fiber-matrix interface.  In turn, the 1σ  

represents the largest principal stress present in the matrix. The choice of using 

principal stress 1σ  instead of ( )maxzzσ  in the above ratios was made based on the 

fact that principal stress 1σ  was increasing at a higher rate than ( )maxzzσ  as the 

crack was approaching fiber-matrix interface.  To illustrate the difference in 

values between 1σ  and max)( zzσ with increasing crack length, the stress ratios, 

max

1

)( zzσ
σ  were calculated for 0.50 and 0.75 fiber-volume fractions and plotted as a 

function of normalized crack length.  Figure 9 clearly shows that the stress ratios, 

max

1

)( zzσ
σ , for both fiber-volume fractions are higher than one when the crack is 

close to the fiber-matrix interface. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 As mentioned in the previous chapters, in this study, we want to assess 

how the fiber-volume fraction, fiber orthotropy, and thermal stresses influence the 

crack propagation path of a cracked fiber – does the crack propagate across the 

interface to the matrix, or does the crack propagate along the interface.  We 

understand that debonding of fiber-matrix interface causes the blunting of the 

crack tip, acts as a crack arrestor, and hence contributes to the overall increase 

in composite toughness.  This can be easily accomplished by making a weak 

fiber-interface, but such weak interfaces decrease transverse compressive and 

shear strength.  Hence, to be able to quantify to build a fiber-matrix interface that 

is just weak enough to allow interface debonding requires us to fully understand 

the mechanisms of crack propagation.  

 The stress ratios used to understand propagation paths of a fiber crack 

were described in chapter 4 and are used to define the conditions necessary for 

debonding of fiber-matrix interface in the fiber reinforced composite subjected to 

longitudinal tensile strain.  The debonding at the interface will occur if: 

1.  The ratio of the maximum tensile stress at the interface, max)( rrσ , to the 

largest principal stress in the matrix, 1σ is greater than the ratio of the 

interface normal strength, intσ , to the ultimate matrix strength, matσ , that is,  
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mat

rr

σ
σ

σ
σ int

1

max)(
>     (34)  

 2.  The ratio of the maximum shear stress at the interface, max)( rzσ , to the 

largest principal stress [8], 1σ , is greater than the ratio of the interface 

shear strength, intτ , to the ultimate matrix strength, matσ , that is,  

 
mat

rz

σ
τ

σ
σ int

1

max)(
>  (35)  

 For a specific composite, the two strength ratios 
matσ

σ int , and 
matσ

τ int  are 

material properties of a particular fiber and matrix combination.  These strength 

ratios are not dependent on fiber-volume fraction.  In contrast, the two stress 

ratios 
1

max)(
σ

σ rr  and 
1

max)(
σ

σ rz on the left side of the inequalities (Equations 34 and 

35) are influenced by several variables such as: crack length, fiber-volume 

fraction, fiber-to-matrix elastic moduli ratio, fiber orthotropy, and thermal stresses.   

 The presentation and discussion of the results is divided into three 

separate parts to study the influence of fiber-volume fraction, fiber orthotropy and 

thermal stress. 
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5.1  Fiber-Volume Fraction 

5.1.1 Elastic Moduli Ratio 1=
m

f

E
E

 

When a composite is made of fiber and matrix that have identical elastic 

moduli, all fiber-volume fractions represent the same geometry of a fiber 

surrounded by a matrix of infinite radius.  So the normalized stress ratios, 

1

max)(
σ

σ rr  and 
1

max)(
σ

σ rz as a function of normalized crack length, 
fr
a are the same 

for all fiber-volume fractions as given in Figures 10 and 11. Note the single 

number given for the normalized crack length of unity.   
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5.1.2  Elastic Moduli Ratio 6=
m

f

E
E

 

Now let us examine how the fiber-volume fraction affects the crack 

propagation path for composites where the fiber and matrix elastic moduli are not 

the same.    Figures 12 shows the normalized stress ratio, 
1

max)(
σ

σ rr as a function 

of normalized crack length.  The trends for fiber-volume fractions of up to 0.5 are 
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the same, and only for large fiber-volume fractions, the normalized stress, 

1

max)(
σ

σ rr shows markedly higher values.   

Figure 13 show the normalized stress ratios, 
1

max)(
σ

σ rz , as a function of 

normalized crack length.  The trends for all fiber-volume fractions look the same. 
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Figure 13:  Stress Ratio, 
1

max)(
σ

σ rz  as a Function of Normalized Crack Length, 
fr
a  

for Elastic Moduli Ratio of 6=
m

f

E
E

 

  
                   

5.1.3  Elastic Moduli Ratio 20=
m

f

E
E

 

Higher fiber-to-matrix moduli ratios, like 20=
m

f

E
E

representing a typical 

glass/epoxy give results in a similar behavior as the case of 6=
m

f

E
E

except the 

differences between stress ratio values are more pronounced.  This is illustrated 

in Figures 14 and 15.   
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5.1.4  Elastic Moduli Ratio 80=
m

f

E
E

 

Higher fiber-to-matrix moduli ratios, like 80=
m

f

E
E

representing a typical 

graphite/epoxy composite, give results in a similar behavior as the cases of 
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6=
m

f

E
E

 and 20=
m

f

E
E

 except the differences between stress ratio values are more 

pronounced.  This is illustrated in Figures 16 and 17.   
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The preceding results clearly indicate a substantial influence of fiber-

volume fraction on the crack propagation path.  The effect is zero for fiber-to- 

matrix moduli ratio, 1=
m

f

E
E

and becomes more pronounced as the fiber-to-matrix 

moduli ratio increases.  For large fiber-volume fractions, we see that the 

possibility of crack propagating along the interface increases, as was observed in 

experimental studies [1].  This is contrary to recent studies [6,7,8] where crack 

propagation paths are considered to be independent of fiber-volume fractions.  
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While the effect of fiber-volume fraction on tensile interface failure was 

rather straightforward, the same cannot be said about the effect of fiber-volume 

fraction on interfacial shear failure.  
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5.1.5 Silicon Carbide/Epoxy Composite 

The purpose of analyzing a particular composite system is that we wanted 

to determine crack propagation path under different remote loading values.  We 

apply strain equal to and then half of the ultimate longitudinal strain of the fiber. 

The corresponding longitudinal displacements were derived in chapter 4, and are 

called 100% and 50% displacements, respectively.    
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Also, we know the ultimate shear and normal strength of the interface for 

this particular composite system (Table 4).  Hence we cannot only find whether 

the interface fails but also whether it fails due to shear or normal stress in the 

interface. 
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Figure 20:  Stress Ratio, 
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max)(
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σ rr as a Function of Normalized Crack Length, 
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for Silicon Carbide/Epoxy at 100% Displacement 
 

 The Figures 20 and 21 illustrate the behavior of a composite that was 

subjected to a displacement that created stress in the fiber equivalent to ultimate 

strength of that fiber.  As it can be seen, the interface tensile failure would take 

place at normalized crack lengths of 0.7 for 0.75 fiber-volume fraction and of 0.8 

for 0.25 and 0.50 fiber-volume fractions.  Because the 
1

max)(
σ

σ rz  stress ratio values 
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for all three fiber-volume fractions are below the interface strength ratio value 

throughout the entire crack propagation process, the interface shear failure would 

not take place.  
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Figure 21:  Stress Ratio, 
1
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σ rz as a Function of Normalized Crack Length, 
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a  

for Silicon Carbide/Epoxy at 100% Displacement 
 
 

To examine the impact of different longitudinal displacements on stress 

ratios and interface failure mode, the results of two displacements (100% and 

50%) were plotted on the same graph, Figures 22 and 23.  The graphs clearly 

show that the reduction in longitudinal displacement by 50% did not affect the 

stress ratio distribution and interface failure in a significant way.   
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Figure 22:  Stress Ratio, 
1

max)(
σ

σ rr as a Function of Normalized Crack Length, 
fr
a  

for Silicon Carbide/Epoxy at 100% and 50% Displacements 
 
 
 

The interface tensile failure for 0.75 fiber-volume fraction would initiate at 

0.75 crack length and 0.25 and 0.50 fiber-volume fractions at 0.85 crack length.  

The interface shear failure as before would not take place because the shear 

strength ratio is significantly larger than stress ratios present at the fiber-matrix 

interface.  
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 After running several additional analyses with other smaller 

displacements, it was found that the shear strength ratio was always higher than 

the corresponding shear stress ratios.  Moreover, the displacements in a 4% to 

100% range show that the crack propagation would be along the interface and 

would be caused by interface tensile failure.  
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Figure 23:  Stress Ratio, 
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max)(
σ

σ rz as a Function of Normalized Crack Length, 
fr
a  

for Silicon Carbide/Epoxy at 100% and 50% Displacements  
 
 
5.2  Fiber Orthotropy 

Up to this point, the composites used in this study were assumed to be fibers 

with isotropic material properties.  This section examines what impact fiber 
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orthotropy have on interface failure.  This is accomplished by comparing analysis 

results of the composite with the orthotropic fiber (transversely isotropic) to the 

analysis results of the composite with isotropic fiber.  In both cases, 

graphite/epoxy composite is used.  

As can be seen in Figure 24, the fiber orthotropic material properties have a 

unique impact on tensile interface failure.  The possibility of interface failure in 

tension increases with increasing fiber-volume fraction between 0.6-0.9 

normalized crack lengths.  During this crack growth, the composite with the 

highest (0.75) fiber-volume fraction is most likely to experience tensile interface 

failure. 

 However, when the normalized crack reaches 0.9, the possibility of interface 

failure in tension for a composite with orthotropic fiber becomes completely 

independent of fiber-volume fraction.  That is, all three fiber-volume fractions 

generate the same tensile stress ratios.  Also, at that point in crack growth, the 

composite with isotropic fiber and 0.75 fiber-volume fraction has the same 

chance of experiencing interface tensile failure as the composite with orthotropic 

fiber.  
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Figure 24:  Stress Ratio, 
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for Graphite/Epoxy Composite with Orthotropic and Isotropic Fibers  
                  
 
 

Figure 25 illustrates the effect of orthotropic fiber on interface failure in 

shear.  It can be clearly seen that the presence of orthotropic fiber diminishes the 

possibility of interface shear failure.  As the crack propagates and approaches 

fiber-matrix interface, the shear stress ratio get progressively smaller.  In fact, 

when the normalized crack length reaches 0.97, the composite with 0.25 fiber-

volume fraction has the largest possibility to experience an interface failure in 

shear.   
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Also, during the final stage of crack growth, the composites with isotropic 

fibers are more prone to undergo an interface failure in shear than those with 

orthotropic fibers.                           
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Figure 25:  Stress Ratio, 
1

max)(
σ

σ rz  as a Function of Normalized Crack Length, 
fr
a  

for Graphite/Epoxy Composite with Orthotropic and Isotropic Fibers 
                  
 

5.3  Thermal Stress 

The thermal stresses in the composite arise due to a mismatch between 

thermal expansion coefficients of a fiber and a matrix.  This mismatch puts the 
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fiber-matrix interface either in tension or in compression depending which 

constituent has larger coefficient of thermal expansion.  

The thermal strain and the corresponding thermal stress were calculated 

based on the following equation: 

)( TT ∆= αε       (36)                     

where,  

Tε   is the thermal strain 

α   is the coefficient of thermal expansion, and 

T∆  is the difference between the ambient and processing temperatures,  

  )( REFTTT −=∆  

The processing was taken to be REFT =170º C   and the final temperature was 

assumed to be a room temperature at T = 20º C.  The resulting negative 

T∆ indicates shrinkage of both components during the cooling process. 

To examine the influence of thermal stress on interface failure, two 

identical composites, one in presence and other in absence of thermal stresses, 

were analyzed and the results were compared.  The composite used in the 

analysis was graphite/epoxy with material properties listed in section 4.3. 

By looking at Figure 26, it can be concluded that thermal stresses reduce 

the possibility of interface failure in tension.  Because the analyzed composite 

had fm αα > , the resulting compressive stress normal to the interface makes 

debonding from crack in fiber less likely. 
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for Graphite/Epoxy Composite With and Without Thermal Load Present        
                   
 
 

The Figure 27 illustrates the impact of thermal stress on interface failure in 

shear.  For the composite with thermal stress present, the shear stress ratios are 

significantly lower during crack propagation between normalized crack lengths of 

0.6 to 0.8 but for larger cracks, the differences between the shear stress ratios 

among the same fiber-volume fractions are almost negligible. 
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Figure 27:  Stress Ratio, 
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σ rz  as a Function of Normalized Crack Length, 
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a  

for Graphite/Epoxy Composite With and Without Thermal Load Present      
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CHAPTER 6 
 

CONCLUSIONS 
 

The conclusions gathered from the results of this study can be summarized as 

follows: 

1.  The fiber-volume fraction has a profound influence on interface failure 

a) The possibility of interface tensile failure increases with higher fiber-volume  

      fraction    

b) The interface tensile failure is more likely to occur for composites with high 

fiber-volume fraction and high fiber-to-matrix moduli ratio 

c) The increase of fiber-volume fraction from medium to high makes the   

interface shear failure more likely during initial crack growth but the 

possibility diminishes as the crack approaches the fiber-to-matrix interface. 

2. The interface in the silicon carbide/epoxy will never fail in shear regardless  

 of the fiber-volume fraction and displacement applied. 

3.   The tensile interface failure in the silicon carbide/epoxy will take place  

 between 4% and 100% of ultimate longitudinal strain. 

4. In the early and middle stages of crack growth, the presence of orthotropic  

fiber in the graphite/epoxy composite increases the likelihood of tensile 

interface failure with increasing fiber-volume fraction.  During the final stage 
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of crack propagation the tensile interface failure is not influenced by fiber-

volume fraction. 

5. The fiber orthotropy in the graphite/epoxy composite diminishes the      

likelihood of interface failure in shear. 

6. The presence of thermal stress in the graphite/epoxy composite lowers the 

possibility of interface failure in tension and in shear. 
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Appendix 1:  Ansys Input File 
 
 
/PREP7 
ET,1,PLANE2, , ,1 
A=0.9 
 
 
K,1,0,0 
K,2,A,0 
K,3,1,0 
K,4,1.155,0 
K,5,10,0 
K,6,10,30 
K,7,1.155,30 
K,8,1,30 
K,9,0,30 
K,10,0,1.2 
K,11,1,1.2 
K,12,1.155,1.2 
 
! LINES 
 
L,1,2                  
LESIZE,1, , ,30 
L,2,3  
LESIZE,2, , ,35              
L,3,4                 
LESIZE,3, , ,100,10 
L,4,5 
LESIZE,4, , ,75               
L,5,6                 
L,6,7                 
L,7,8                 
L,8,9                
L,9,10  
LESIZE,9, , ,50               
L,10,1                
LESIZE,10, , ,65 
L,10,11                
LESIZE,11, , ,50 
L,11,12               
LESIZE,12, , ,50 
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Appendix 1 (Continued) 
 

 
L,11,8 
LESIZE,13, , ,100               
L,12,7  
LESIZE,14, , ,100               
L,3,11                
LESIZE,15, , ,360,20 
L,4,12                
LESIZE,16, , ,75 
 
! AREAS 
 
AL,1,2,15,11,10          
AL,15,3,16,12           
AL,4,5,6,14,16    
AL,13,12,14,7           
AL,11,13,8,9            
 
! FIBER PROPERTIES 
 
Efy=260E09               
Efx=14E09 
Efz=14E09             
Vf=0.75               
Vm=1-Vf                     
PSRfyx=0.26 
PSRfxy=(PSRfyx*Efx)/Efy 
PSRfyz=0.26 
PSRfxz=0.33 
Gfyx=51E09 
Gfyz=51E09 
Gfxz=8.27E09 
CTEfy=-0.855E-06 
CTEfx=3.24E-06 
CTEfz=3.24E-06 
 
! MATRIX PROPERTIES 
 
Em=3.5E09                  
PSRm=0.35 
Gm=Em/(2*(1+PSRm)) 
CTEm=90E-06  
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Appendix 1  (Continued) 

 
 
! COMPOSTE FORMULAS 
                      
Eyy=Efy*Vf+Em*Vm    
Exx=(Em)/(1-(Vf**0.5)*(1-Em/Efx))                                         
Ezz=(Em)/(1-(Vf**0.5)*(1-Em/Efx)) 
  
Gyx=(Gm)/(1-(Vf**0.5)*(1-Gm/Gfyx)) 
Gyz=(Gm)/(1-(Vf**0.5)*(1-Gm/Gfyx)) 
Gxz=(Gm)/(1-(Vf**0.5)*(1-Gm/Gfxz))                                         
 
PSRyx=PSRfXY*Vf+PSRm*Vm 
PSRxy=(PSRyx*Exx)/Eyy 
PSRyz=PSRfxy*Vf+PSRm*Vm 
PSRxz=(Exx/(2*Gxz))-1 
 
CTEyy=(Efy*CTEfy*Vf+Em*CTEm*Vm)/(Efy*Vf+Em*Vm) 
CTExx=Vf*CTEfy*(1+PSRfyx)+Vm*CTEm*(1+PSRm)-
(Vf*PSRfyx+Vm*PSRm)*CTEyy 
CTEZZ=Vf*CTEfy*(1+PSRfyx)+Vm*CTEm*(1+PSRm)-
(Vf*PSRfyx+Vm*PSRm)*CTEyy 
 
! MATERIAL 1      (FIBER) 
 
MP,EY,1,Efy 
MP,EX,1,Efx 
MP,EZ,1,Efz 
MP,PRXY,1,PSRfXY 
MP,PRYZ,1,PSRfyz 
MP,PRXZ,1,PSRfxz 
MP,GXY,1,GfYX 
MP,GYZ,1,GfYZ 
MP,GXZ,1,Gfxz 
MP,ALPX,1,CTEfx 
MP,ALPY,1,CTEfy 
MP,ALPZ,1,CTEfz 
MP,REFT,1,170 
 
! MATERIAL 2      (MATRIX) 
 
MP, EX, 2, Em 
MP, PRXY, 2, PSRm 
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Appendix 1 (Continued) 

 
 
MP, ALPX, 2, CTEm 
MP, REFT, 2,170 
 
! MATERIAL 3      (COMPOSITE) 
 
MP,EX,3,Exx 
MP,EY,3,Eyy 
MP,EZ,3,Ezz 
MP,PRXY,3,PSRXY 
MP,PRYZ,3,PSRyz 
MP,PRXZ,3,PSRxz 
MP,GXY,3,Gyx 
MP,GYZ,3,Gyz 
MP,GXZ,3,Gxz 
MP,ALPX,3,CTExx 
MP,ALPY,3,CTEyy 
MP,ALPZ,3,CTEzz 
MP,REFT,3,170 
 
BFUNIF,TEMP,20 
A262=A/262 
KSCON,2,A262,1,6,1 
 
MAT,1 
AMESH,1 
MAT,1 
AMESH,5 
MAT,2 
AMESH,2 
MAT,2 
AMESH,4 
MAT,3 
AMESH,3 
 
! BOUNDARY CONDITIONS 
 
DL,2,1,SYMM 
DL,3,2,SYMM 
DL,4,3,SYMM 
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Appendix 1 (Continued) 

 
 
DL,8,5,UY,0.46587 
DL,6,3,UY,0.46587 
DL,7,4,UY,0.46587 
 
Finish 
/Solu 
Solve 
finish 
 
NSEL,R,LOC,X,0.9999999,1.00001 
NSEL,R,LOC,Y,0,30 
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Appendix 2:  Maple Instructions 
 

 
p : pressure on crack 
a: Radius of crack 
E: Young's modulus 
nu: Poisson's ratio 
mu: Shear modulus 
rin, zin: radial and z loaction, respectively  
 
 
> restart;                                                                                                            
p:=-50000; a:=1.0; E:=30E6;nu:=0.3;mu:=E/(2.*(1+nu)) ;rin:=0.581468892926; 
zin:=0.107101144421; 

 

> A:=-p/(Pi*mu)*(sin(s*a)-s*a*cos(s*a))/(s^2); 
 

> f:=int(A/s*BesselJ(0,r*s)*exp(-s*z),s=0..infinity); 
 

> sz:=2*mu*(-diff(f,z,z)+z*diff(f,z,z,z)); 
 

> stheta:=2*mu*(1/r*diff(f,r)+2*nu*diff(f,r,r)+z/r*diff(f,r,z)); 
 

> sr:=2*mu*((1-2*nu)*diff(f,r,r)-2*nu*diff(f,z,z)+z*diff(f,r,r,z)); 
 

> trz:=2*mu*z*diff(f,r,z,z); 
 

> ur:=(1-2*nu)*diff(f,r)+z*diff(f,r,z); 
 

> uz:=(-2*(1-nu)*diff(f,z))+z*diff(f,z,z); 
 

> evalf(subs(r=rin,z=zin,ur)); 
 

> evalf(subs(r=rin,z=zin,uz)); 
 

> evalf(subs(r=rin,z=zin,sr)); 
 

> evalf(subs(r=rin,z=zin,sz)); 
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Appendix 2 (Continued) 

 

> evalf(subs(r=rin,z=zin,stheta)); 
 

> evalf(subs(r=rin,z=zin,trz)); 
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Appendix 3:  Mathcad File 
 

 
 

 
 

 
 

 
 

 

 
 
 

p nc 50000:=ν 0.3:=  E 30 10 6
⋅:=  

u r.nc ε r r⋅:=

 

r 1.00:=  

z 0.237853902209 10 1−
⋅:=  

ε r
ν− p nc⋅

E
:=  ur.nc 0.0005−=  

DISPLACEMENTS 

From Maple u r.c 0.0002309016707−:=  
u r.total u r.nc u r.c+:=  

ur.total 7.30902− 10 4−
×=  ur.ansys 0.72998− 10 3−

⋅:=  From Ansys 

ε ur
u r.total u r.ansys−

u r.total

⎛
⎜
⎝

⎞

⎠
100⋅:= ε ur 0.126=  

ε z
p nc

E
:=  

u z.nc ε z z⋅:= u z.nc 0.000039642317=

u z.c 0.00002240994425:= From Maple u z.total u z.nc u z.c+:=  

uz.total 0.0000621=  
uz.ansys 0.61989 10 4−

⋅:=  From Ansys 

εuz
uz.total uz.ansys−

uz.total

⎛
⎜
⎝

⎞

⎠
100⋅:=  εuz 0.102=
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Appendix 3 (Continued) 
 

STRESSES 
 
 
 

 
 

σ r.c 41963.92344:=  σ θ .c 21332.52740:=  From Maple 

σ r.nc 0:=  
σ θ .nc 0:=

σr.total σr.c σr.nc+:=  
σθ.total σθ.c σθ.nc+:=  

σ r.total 41963.9234=  
σ θ .total 21332.5274=  

σ r.ansys 41950:=  From Ansys σθ.ansys 21326:= From Ansys 

εσr
σ r.total σ r.ansys−

σ r.total
100⋅:=  

εσθ
σ θ .total σθ .ansys−

σ θ .total
100⋅:=

εσr 0.033= εσθ 0.031=

σ z.c 52234.66801:=  From Maple 
σ rz.c 11742.67654:=  From Maple 

σ z.nc 50000:=  
σ rz.nc 0:=  

σz.total σz.c σz.nc+:=  
σrz.total σrz.c σrz.nc+:=  

σ z.total 102234.668=  
σ rz.total 11742.6765=  

σz.ansys 0.10214 106
⋅:=  From Ansys 

σ rz.ansys 11739:=  

εσz 0.093=  
εσrz 0.031=

From Maple 

εσz
σz.total σz.ansys−

σz.total
100⋅:=  

From Ansys 

εσrz
σ rz.total σ rz.ansys−

σ rz.total
100⋅:=  
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